

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pointfree 1.1.1 documentation

Pointfree documentation

	Author:	Mark Shroyer

	Email:	code@markshroyer.com

	Release:	1.1.1

	Date:	April 20, 2013

pointfree is a module providing Pythonic pointfree-style
programming. This is its documentation.

	Overview
	Introduction

	Examples

	Getting the module

	Module reference
	Copyright notice

	Usage

	Wrapper classes

	Composable helper functions

	FAQ

	License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Mark Shroyer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.0

 Overview

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pointfree 1.1.1 documentation

Overview

Introduction

pointfree is a small module that makes certain functional
programming constructs more convenient to use in Python.

Specifically, it provides:

	A decorator to enable automatic partial application of functions and
methods.

	Notations for function composition through operator overloading.

	Helper functions to make composing generators more elegant.

The objective is to support the pointfree programming style [http://www.haskell.org/haskellwiki/Pointfree] in a
lightweight and easy to use manner – and in particular, to serve as a nice
syntax for the kind of generator pipelines described in David Beazley’s
PyCon 2008 presentation, “Generator Tricks for Systems Programmers” [http://www.dabeaz.com/generators/Generators.pdf].

Examples

The pointfree module is about using function composition notation
in conjunction with automatic partial application. Both of these features
are achieved by wrapping functions in the pointfree
class (which can also be applied as a decorator).

Several “pre-wrapped” helper functions are provided by the module. For
instance, if you wanted to define a function that returns the sum of
squares of the lengths of the strings in a list, you could do so by
combining the helpers pfmap() and
pfreduce():

>>> from pointfree import *
>>> from operator import add

>>> fn = pfmap(len) >> pfmap(lambda n: n**2) >> pfreduce(add, initial=0)
>>> fn(["foo", "barr", "bazzz"])
50

Aside from the built-in helpers, you can define your own composable
functions by applying pointfree as a decorator.
Building upon an example from Beazley’s presentation, suppose you have
defined the following functions for operating on lines of text:

>>> import re

>>> @pointfree
... def gen_grep(pat, lines):
... patc = re.compile(pat)
... for line in lines:
... if patc.search(line):
... yield line

>>> @pointfree
... def gen_repeat(times, lines):
... for line in lines:
... for n in range(times):
... yield line

>>> @pointfree
... def gen_upcase(lines):
... for line in lines:
... yield line.upper()

And you have some text too:

>>> bad_poetry = \
... """roses are red
... violets are blue
... I like generators
... and this isn't a poem
... um let's see...
... oh yeah and daffodils are flowers too""".split("\n")

Now say you want to find just the lines of your text that contain the name
of a flower and print them, twice, in upper case. (A common problem, I’m
sure.) The given functions can be combined to do so as follows, using
pointfree's automatic partial application
and its function composition operators:

>>> f = gen_grep(r'(roses|violets|daffodils)') \
... >> gen_upcase \
... >> gen_repeat(2) \
... >> pfprint_all

>>> f(bad_poetry)
ROSES ARE RED
ROSES ARE RED
VIOLETS ARE BLUE
VIOLETS ARE BLUE
OH YEAH AND DAFFODILS ARE FLOWERS TOO
OH YEAH AND DAFFODILS ARE FLOWERS TOO

In addition to the >> operator for “forward” composition (borrowed from
F#), functions can also be composed with the * operator, which is
intended to be remniscent of the circle operator “∘” from algebra, or the
corresponding dot operator in Haskell:

>>> @pointfree
... def f(x):
... return x**2

>>> @pointfree
... def g(x):
... return x+1

>>> h = f * g
>>> h(2)
9

Of course you don’t have to define your methods using decorator notation in
order to use pointfree; you can directly instantiate
the class from an existing function or method:

>>> (pf(lambda x: x*2) * pf(lambda x: x+1))(3)
8

(pf is provided as a shorthand alias for the
pointfree class.)

If you want automatic partial application but not the composition
operators, use the module’s partial decorator
instead:

>>> @partial
... def add_three(a, b, c):
... return a + b + c

>>> add_three(1)(2)(3)
6

The module’s partial application support has some subtle intentional
differences from normal Python function application rules. Please see the
module reference for details.

Getting the module

Full documentation is available on the web at:

http://markshroyer.com/docs/pointfree/latest/

The easiest way to install the latest release on your machine is to get it
from PyPI [https://pypi.python.org/] using pip [http://pypi.python.org/pypi/pip]:

$ pip install pointfree

or easy_install:

$ easy_install pointfree

Or you can download the module manually [https://pypi.python.org/pypi/pointfree/] and perform the standard
distutils incantations:

$ tar xzf pointfree-*.tar.gz
$ cd pointfree-*
$ python setup.py install

The module’s development repository is hosted on Github:

https://github.com/markshroyer/pointfree

and the very latest development version can also be installed using pip:

$ pip install git+git://github.com/markshroyer/pointfree.git

pointfree is compatible with the following Python
implementations:

	CPython 2.6, 2.7, 3.0, 3.1, 3.2, and 3.3

	PyPy 1.9.0

	IronPython 2.7.1

Python 3 is fully supported, including PEP 3102 [http://www.python.org/dev/peps/pep-3102/] keyword-only arguments.

 Copyright 2013, Mark Shroyer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.0

 Module reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pointfree 1.1.1 documentation

Module reference

Pythonic pointfree programming.

	Full documentation: http://pointfree.readthedocs.org/en/latest/

	Project page: https://github.com/markshroyer/pointfree

Copyright notice

Copyright 2013 Mark Shroyer

Licensed under the Apache License, Version 2.0 (the “License”); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

Usage

The general use case is to wrap functions in the
pointfree wrapper / decorator class, granting them
both automatic partial application support and a pair of function
composition operators:

>>> from pointfree import *

>>> @pointfree
... def pfadd(a, b):
... return a + b

>>> @pointfree
... def pfexp(n, exp):
... return n ** exp

>>> fn = pfexp(exp=2) * pfadd(1)
>>> fn(3)
16

pointfree.pointfree inherits from the
pointfree.partial class (not to be confused with
functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial]), which provides automatic partial application
but not the function composition operators. See partial's documentation for details of the partial application
semantics, and pointfree's documentation
for information about the function composition operators.

The module also includes a number of pre-defined helper functions which can
be combined for various purposes:

>>> fn = pfmap(lambda x: x**3) >> pfprint_all

>>> fn(range(4))
0
1
8
27

Refer to the section Composable helper functions for information about the
helpers provided by this module.

Wrapper classes

	
class pointfree.partial(func, *pargs, **kargs)

	Wraps a regular Python function or method into a callable object
supporting automatic partial application.

	Parameters:	
	func – Function or method to wrap

	pargs – Optional, positional arguments for the wrapped function

	kargs – Optional, keyword arguments for the wrapped function

Example:

>>> @partial
... def foo(a,b,c):
... return a + b + c
>>> foo(1,2,3)
6
>>> foo(1)(2)(3)
6

Generally speaking, the evaluation strategy with regard to automatic
partial application is to apply all given arguments to the underlying
function as soon as possible.

When a partial instance is called, the
positional and keyword arguments supplied are combined with the
instance’s own cache of arguments for the wrapped function (which is
empty to begin with, for instances directly wrapping – or applied as
decorators to – pure Python functions or methods). If the combined
set of arguments is sufficient to invoke the wrapped function, then the
function is called and its result returned. If the combined arguments
are not sufficient, then a new copy of the wrapper is returned
instead, with the new combined argument set in its cache.

Calling a partial object never changes its
state; instances are immutable for practical purposes, so they can be
called and reused indefinitely:

>>> p = q = foo(1,2)
>>> p(3)
6
>>> q(4) # Using the same instance twice
7

Arguments with default values do not need to be explicitly specified in
order for evaluation to occur. In the following example, foo2 can
be evaluated as soon as we have specified the arguments a and
b:

>>> @partial
... def foo2(a, b, c=3):
... return a + b + c

>>> foo2(1,2)
6
>>> foo2(1)(2)
6

However, if extra arguments are supplied prior to evaluation, and if
the underlying function is capable of accepting those arguments, then
those will be passed to the function as well. If we call foo2 as
follows, the third argument will be passed to the wrapped function as
c, overriding its default value:

>>> foo2(1,2,5)
8
>>> foo2(3)(4,5)
12

This works similarly with functions that accept variable positional
argument lists:

>>> @partial
... def foo3(a, *args):
... return a + sum(args)

>>> foo3(1)
1
>>> foo3(1,2)
3
>>> foo3(1,2,3)
6

Or variable keyword argument lists:

>>> @partial
... def foo4(a, **kargs):
... kargs.update({'a': a})
... return kargs

>>> result = foo4(3, b=4, c=5)
>>> for key in sorted(result.keys()):
... print("%s: %s" % (key, result[key]))
a: 3
b: 4
c: 5

But if you try to supply an argument that the function cannot accept, a
TypeError [http://docs.python.org/2.7/library/exceptions.html#exceptions.TypeError] will be raised as soon as you attempt
to do so – the wrapper doesn’t wait until the underlying function is
called before raising the exception (unlike with
functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial]):

>>> @partial
... def foo5(a, b, c):
... return a + b + c

>>> foo5(d=7)
Traceback (most recent call last):
 ...
TypeError: foo5() got an unexpected keyword argument 'd'

There are some sutble differences between how automatic partial
application works in this module and the semantics of regular Python
function application (or, again, of functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial]).
First, keyword arguments to partially applied functions can override an
argument specified in a previous call:

>>> @partial
... def foo6(a, b, c):
... return (a, b, c)

>>> foo6(1)(b=2)(b=3)(4) # overriding b given as keyword
(1, 3, 4)
>>> foo6(1,2)(b=3)(4) # overriding b given positionally
(1, 3, 4)

Also, the wrapper somewhat blurs the line between positional and
keyword arguments for the sake of flexibilty. If an argument is
specified with a keyword and then “reached” by a positional argument in
a subsequent call, the remaining positional argument values “wrap
around” the argument previously specified as a keyword.

This second difference is best illustrated by example. Again using the
function foo6 from above, if we specify b as a keyword
argument:

>>> p = foo6(b=2)

and then apply two positional arguments to the resulting
partial instance, those arguments will be used
to specify a and c, skipping over b because it has already
been specified:

>>> p(1,3)
(1, 2, 3)

This approach was chosen because it allows us to compose partial
applications of functions where a previous argument has been specified
as a keyword argument.

As well as functions, partial can be applied to
methods, including class and static methods:

>>> class Foo7(object):
... m = 2
...
... def __init__(self, n):
... self.n = n
...
... @partial
... def bar_inst(self, a, b, c):
... return self.m + self.n + a + b + c
...
... @partial
... @classmethod
... def bar_class(klass, a, b, c):
... return klass.m + a + b + c
...
... @partial
... @staticmethod
... def bar_static(a, b, c):
... return a + b + c

>>> f = Foo7(3)
>>> f.bar_inst(4)(5)(6)
20
>>> f.bar_class(3)(4)(5)
14
>>> f.bar_static(2)(3)(4)
9

The wrapper can also be instantiated from another
partial instance:

>>> def foo8(a, b, c, *args):
... return a + b + c + sum(args)

>>> p = partial(foo8, 1)
>>> q = partial(p, 2)
>>> q(3)
6

Or even from a functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial] instance:

>>> p = functools.partial(foo8, 1)
>>> q = partial(p)
>>> q(2)(3)
6

However, it cannot currently wrap a Python builtin function (or a
functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial] instance which wraps a builtin function),
as Python does not currently provide sufficient reflection for its
builtins.

While you will probably apply partial as a
decorator when defining your own functions, you can also wrap existing
functions by instantiating the class directly:

>>> partial(foo8)(1)(2)(3)
6

Or like with functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial], you can specify arguments
for the wrapped function when you instantiate a wrapper:

>>> p = partial(foo8, 1)
>>> p(2)(3)
6

But unlike calling an existing wrapper instance, the wrapped function
will not be invoked during instantiation even if enough arguments are
supplied in order to do so; invocation does not occur until the
partial instance is called at least once, even
with an empty argument list:

>>> p = partial(foo8, 1, 2, 3)
>>> type(p)
<class 'pointfree.partial'>
>>> p()
6
>>> p(4)
10

	
class pointfree.pointfree(func, *pargs, **kargs)

	Wraps a regular Python function or method into a callable object
supporting the >> and * function composition operators, as well
as automatic partial application inherited from
partial.

	Parameters:	
	func – Function or method to wrap

	pargs – Optional, positional arguments for the wrapped function

	kargs – Optional, keyword arguments for the wrapped function

This class inherits its partial application behavior from
partial; refer to its documentation for details.

On top of automatic partial application, the
pointfree wrapper adds two function composition
operators, >> and *, for “forward” and “reverse” function
composition respectively. For example, given the following wrapped
functions:

>>> @pointfree
... def pfadd(a, b):
... return a + b

>>> @pointfree
... def pfmul(a, b):
... return a * b

The following forward composition defines the function f() as one
which takes a given number, adds one to it, and then multiplies the
result of the addition by two:

>>> f = pfadd(1) >> pfmul(2)
>>> f(1)
4

Reverse composition simply works in the opposite direction. In this
example, g() takes a number, multiplies it by three, and then adds
four:

>>> g = pfadd(4) * pfmul(3)
>>> g(5)
19

The alias pf is provided for pointfree to
conserve electrons when wrapping functions inline:

>>> def add(a, b):
... return a + b

>>> def mul(a, b):
... return a * b

>>> f = pf(add, 1) >> pf(mul, 2)
>>> f(2)
6

When using pointfree as a decorator on class or
static methods, you must ensure that it is the “topmost” decorator, so
that the resulting object is a pointfree
instance in order for the composition operators to work.

Composable helper functions

	
pointfree.pfmap(func, iterable)

	A pointfree map function: Returns an iterator over the results of
applying a function of one argument to the items of a given iterable.
The function is provided “lazily” to the given iterable; each function
application is performed on the fly as it is requested.

	Parameters:	
	func – A function of one argument to apply to each item

	iterable – An iterator yielding input for the function

	Return type:	Iterator of function application results

Example:

>>> f = pfmap(lambda x: x+1) \
... >> pfmap(lambda x: x*2) \
... >> pfcollect

>>> f(range(5))
[2, 4, 6, 8, 10]

	
pointfree.pfreduce(func, iterable[, initial=None])

	A pointfree reduce / left fold function: Applies a function of two
arguments cumulatively to the items supplied by the given iterable, so
as to reduce the iterable to a single value. If an initial value is
supplied, it is placed before the items from the iterable in the
calculation, and serves as the default when the iterable is empty.

	Parameters:	
	func – A function of two arguments

	iterable – An iterable yielding input for the function

	initial – An optional initial input for the function

	Return type:	Single value

Example:

>>> from operator import add

>>> sum_of_squares = pfreduce(add, initial=0) * pfmap(lambda n: n**2)
>>> sum_of_squares([3, 4, 5, 6])
86

	
pointfree.pffilter(param, iterable)

	Pointfree filter function.

Example:

>>> f = pffilter(lambda n: n % 2 == 0) \
... >> pfcollect

>>> f(range(5))
[0, 2, 4]

	
pointfree.pfcollect(iterable[, n=None])

	Collects and returns a list of values from the given iterable. If
the n parameter is not specified, collects all values from the
iterable.

	Parameters:	
	iterable – An iterable yielding values for the list

	n – An optional maximum number of items to collect

	Return type:	List of values from the iterable

Example:

>>> @pointfree
... def fibonaccis():
... a, b = 0, 1
... while True:
... a, b = b, a+b
... yield a

>>> (pfcollect(n=10) * fibonaccis)()
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

	
pointfree.pfprint(item[, end='\n', file=sys.stdout])

	Prints an item.

	Parameters:	
	item – The item to print

	end – String to append to the end of printed output

	file – File to which output is printed

	Return type:	None

Example:

>>> from operator import add

>>> fn = pfreduce(add, initial=0) >> pfprint
>>> fn([1, 2, 3, 4])
10

	
pointfree.pfprint_all(iterable[, end='\n', file=sys.stdout])

	Prints each item from an iterable.

	Parameters:	
	iterable – An iterable yielding values to print

	end – String to append to the end of printed output

	file – File to which output is printed

	Return type:	None

Example:

>>> @pointfree
... def prefix_all(prefix, iterable):
... for item in iterable:
... yield "%s%s" % (prefix, item)

>>> fn = prefix_all("An item: ") >> pfprint_all

>>> fn(["foo", "bar", "baz"])
An item: foo
An item: bar
An item: baz

	
pointfree.pfignore_all(iterable)

	Consumes all the items from an iterable, discarding their output.
This may be useful if evaluating the iterable produces some desirable
side-effect, but you have no need to collect its output.

	Parameters:	iterable – An iterable

	Return type:	None

Example:

>>> result = []

>>> @pointfree
... def append_all(collector, iterable):
... for item in iterable:
... collector.append(item)
... yield item

>>> @pointfree
... def square_all(iterable):
... for item in iterable:
... yield item**2

>>> fn = square_all \
... >> append_all(result) \
... >> pfignore_all
>>> fn([1, 2, 3, 4])
>>> result
[1, 4, 9, 16]

 Copyright 2013, Mark Shroyer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.0

 FAQ

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pointfree 1.1.1 documentation

FAQ

	Q. Python already includes a partial application class in the standard
library’s functools module; why not just use that?

There are two major reasons that I felt the need to write a new
implementation of partial function application for this module.

First, use of the function composition operators provided by the
pointfree decorator requires cooperation between
the partial application mechanism and the implementation of overloaded
operators; the result of a partial application must be an object which
defines the necessary operators, so at the very least I would need to
wrap functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial] anyway. (And that in itself would not
be easy, because functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial] does not provide a way to
test whether enough arguments have been provided to call the underlying
function.)

The second reason is a subjective matter of taste. The standard
library’s partial() [http://docs.python.org/2.7/library/functools.html#functools.partial] requires explicit creation of a
new object every time you wish to perform partial application and then a
separate call in order to actually invoke the underlying function, and
this is more verbose and (in my opinion) less elegant than I would like.
For a contrived example:

>>> from functools import partial

>>> def add_thrice(a, b, c):
... return a + b + c

>>> plusone = partial(add_thrice, 1)
>>> plusone(2, 3)
6
>>> plusthree = partial(plusone, 2)
>>> plusthree(3)
6

In contrast, pointfree’s partial decorator lets
you perform partial application with the same syntax as “full”
application:

>>> from pointfree import partial

>>> @partial
... def add_thrice(a, b, c):
... return a + b + c

>>> plusone = add_thrice(1)
>>> plusone(2, 3)
6
>>> plusthree = plusone(2)
>>> plusthree(3)
6

There are also several minor ways in which functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial]
is not ideal for supporting the pointfree style. If you have a function
of two arguments and you specify the first as a keyword argument, you
cannot then specify the second positionally in a subsequent application;
this would prevent such a partially-applied function from being composed
with other functions:

>>> from functools import partial

>>> def add(a, b):
... return a + b

>>> p = partial(add, a=1)
>>> p(2)
Traceback (most recent call last):
 ...
TypeError: add() got multiple values for keyword argument 'a'

Whereas you can do this with pointfree, due to its slightly different
semantics for positional argument application (which is fully described
in the Module reference):

>>> from pointfree import partial

>>> @partial
... def add(a, b):
... return a + b

>>> p = add(a=1)
>>> p(2)
3

Also, with the standard library’s partial class you don’t see errors
immediately when you apply invalid positional or keyword arguments; the
exception is only raised when you later __call__ the partial object:

>>> from functools import partial

>>> def add(a, b):
... return a + b

>>> p = partial(add, c=3) # No error is raised yet
>>> q = partial(p, 1) # Still no error
>>> q(2) # Now we get an error!
Traceback (most recent call last):
 ...
TypeError: add() got an unexpected keyword argument 'c'

But with pointfree’s partial application, the error is raised
immediately:

>>> from pointfree import partial

>>> @partial
... def add(a, b):
... return a + b

>>> p = add(c=3)
Traceback (most recent call last):
 ...
TypeError: add() got an unexpected keyword argument 'c'

	Q. Are there any disadvantages to pointfree’s partial application
style?

Because Python does not currently expose built-in functions for
introspection, the pure-Python pointfree.partial wrapper does
not work with built-in functions.

Also, with the pointfree implementation of partial application you cannot
specify optional positional arguments in multiple applications, because
evaluation will occur automatically as soon as enough arguments have been
specified. So, for instance, with functools.partial() [http://docs.python.org/2.7/library/functools.html#functools.partial]:

>>> from functools import partial

>>> def add_all(*argv):
... return sum(argv)

>>> f = partial(add_all, 1, 2)
>>> g = partial(f, 3, 4)
>>> g(5)
15

Whereas with pointfree, the function would be evaluated as soon as it has
been supplied any arguments:

>>> from pointfree import partial

>>> partial(add_all)(1, 2) # evaluated immediately
3

Despite these limitations, I prefer the brevity of the pointfree
implementation (which is of course why I wrote it). Naturally, your
mileage may vary.

 Copyright 2013, Mark Shroyer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.0

 License

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pointfree 1.1.1 documentation

License

Copyright 2013 Mark Shroyer

Licensed under the Apache License, Version 2.0 (the “License”); you may not
use this file except in compliance with the License. A copy of the license
is provided below.

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2013, Mark Shroyer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.0

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	pointfree 1.1.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 pointfree	

 Copyright 2013, Mark Shroyer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.0

 Index

 Navigation

 	
 index

 	
 modules |

 	pointfree 1.1.1 documentation

Index

 P

P

 	

 	partial (class in pointfree)

 	pfcollect() (in module pointfree)

 	pffilter() (in module pointfree)

 	pfignore_all() (in module pointfree)

 	pfmap() (in module pointfree)

 	

 	pfprint() (in module pointfree)

 	pfprint_all() (in module pointfree)

 	pfreduce() (in module pointfree)

 	pointfree (class in pointfree)

 	

 	(module)

 Copyright 2013, Mark Shroyer.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.0

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pointfree 1.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

